非一様乱流、乱流モデル Bw508

半場研究室

乱流の物理とモデリング

基礎系部門

理学系研究科 物理学真政

流体物理学

http://www.iis.u-tokyo.ac.jp/~hamba/

乱流のモデリングとは

自然界や工学分野で見られる空気や水の流れの多くは不規則に変化する乱流になっています。流体運動の方程式をコンピューターで計算すれば流れのふるまいを求めることができます。しかし乱流には大小さまざまな大きさの渦が含まれているので、それらの渦をすべて計算するのは困難であり、平均場の大スケールの渦だけを計算することによって乱流を予測することになります。そのためには何らかの平均操作をして流速の平均場の方程式を理論的に導く必要があります。これが乱流のモデリングです。

平均操作によって隠されてしまう小さな渦は、平均場の大きな渦に対して粘性率の増大という形で影響を及ぼします。この乱流粘性率という輸送係数をどのように求めるか、閉じた方程式系をどのようにして構成するかが重要な課題となります。われわれは乱流の統計理論や数値計算を用いて、乱流の機構を解明し乱流粘性率などのモデリングを行っています。そして乱流の従う普遍的なモデル方程式を導くことをめざしています。

チャネル乱流の輸送機構の解析

壁面近くで乱流が作られる機構を解明するため、スケール空間のエネルギー輸送に着目した。速度のフィルター平均を用いてスケール空間のエネルギー密度の定式化を行った。

圧縮性乱流の逆勾配拡散の解析

ある種の圧縮性乱流では、通常とは逆に低温部から高温部へ熱が流れる逆勾配拡散現象が見られる。乱 流レイリー流れの数値計算を行い熱フラックスの輸送方程式を調べ、逆勾配拡散の機構を考察した。

電磁流体乱流のモデリングと磁気リコネクション現象

太陽表面で燃え上がるフレアは磁力線のリコネクション(つなぎ換え)によって引き起こされると考えられる。宇宙・天文現象で重要な磁気リコネクションを、電磁流体乱流モデルの観点から解析し考察した。

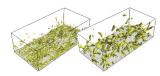


図1 チャネル乱流の壁近くの渦構造

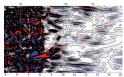


図2 乱流レイリー流れの渦構造

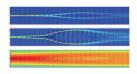


図3 磁気リコネクションによるジェット

