Optimal Design by Machine Learning, Multiscale Analysis, High Pressure Hydrogen

Takemoto LAB. [Optimal Design of Hydrogen Tank by Machine Learning]

An605

Department of Fundamental Engineering

Al Design Engineering

Carbon fiber reinforced plastic (CFRP) is used for the hydrogen storage tank, which is indispensable for a hydrogen society aiming at de-carbonization, because it is lightweight and can withstand high pressure. As a result, the structure of the tank is complicated and there are large number of design parameters, so the tank test, which requires a huge amount of period and cost, and the try and error design based on it have made it extremely expensive. In this research, we will build a design optimization AI that easily obtains the optimum design parameters that are inexpensive and lightweight while satisfying the tank design requirements by inverse analysis using a machine learning model.

- Creation of machine learning data by mesoscale model simulation that reproduces the destruction phenomenon of CFRP on the mesoscale.
- Development of a machine learning module that rationally searches for the optimum solution in the shortest time.
- The optimal solution obtained by design optimization AI is demonstrated by theory and experiment by mesoscale model simulation and tank rupture test.

high pressure hydrogen tank

Tank rupture test

Design optimization AI

Design requirements

- Carbon fiber type
- Resin type
- Burst pressure
- Volume
- Space

Optimal design

Shape

- Dimension
- CFRP laminate

FrontCOMP

Creation for machine learning data by mesoscale simulation

Design parameters

Filament winding Braiding Plug design

Design parameters setting by discrete optimization

Machine learning module

Machine learning Principal component analysis algorithm Model construction by machine learning algorithm

