Future Materials: Titanium, Rare Metals

IRCSEM

OKABE LAB.

[Future Materials: Titanium, Rare Metals]

Integrated Research Center for Sustainable Energy and Materials

Resource Recovery and Materials Process Engineering

Department of Materials Engineering

http://okabe.iis.u-tokyo.ac.jp

Changing Rare Metals to "Common" Metals !

The Okabe Laboratory is focusing on research into new production processes for reactive metals and environmentally sound

Fw-302

recycling technologies for rare metals, based on "Future Materials : Titanium, Rare Metals" as the keywords. We believe that we can contribute to the society by developing innovative process technologies for rare metals.

Environmentally Sound Recycling Process for Rare Metals

Titanium (Ti):

Excellent mechanical property Abundant mineral resource

Fabrication of aviation parts using Ti alloys usually involves a material loss of up to 80-90%.

O and Fe removal from Ti is very difficult.

"Electrochemical deoxidation" Oxygen dissolved in Ti scrap was removed by electrolysis in $MgCl_2$. "Reaction-mediator-based chlorination" TiCl₄ was effectively recovered by combining Ti scrap and chloride waste. Ti 4 SmCl₃ 2 FeCl,

Cemented carbide tools

Supply of W resource is highly localized in China just like rare earth elements.

Main Re application : Turbine blade **Re-added Ni-based superalloy is used**

Re is one of the rarest elements in the world

Environmentally sound recycling without toxic waste generation has been investigated.

- Metal extraction using a low-melting metal as collector
- Separation and refining of rare metals

Problems of Ti powder metallurgy

- Ti reacts with oxygen in sintering step
- Oxygen degrades properties of Ti

✓ Oxygen Titanium powder

Collector metals, Superalloy M (I) scraps No toxic Ni extraction by molten *M* waste *M*–Ni (*I*) **Re compound** generation **M** distillation **Re recovery** Ni (*s)* M (g)

Novel process for making Ti products

Development of novel process for producing high-quality Ti products

Ti products are used in aeroplanes, automobiles, motorcycles. However, it is difficult to machine Ti.

> **Developing a novel process for** producing high-quality Ti products

- by using molten salts

sintering due to its strong chemical affinity with Ti

