OSHIMA LAB.

Medical Image x Simulation x Al

Department of Mechanical and Biofunctional Systems

Bio-microfluidics

Department of Mechanical Engineering, Graduate School of Engineering Interfaculty Initiative in Information Studies

https://www.oshimalab.iis.u-tokyo.ac.jp/japanese/

Investigation of Bio/Micro-fluid Mechanics

Objectives

- To investigate the influences of vascular geometry on hemodynamics
- To develop a numerical simulation system for clinical diagnosis

Simulation

 Uncertainty quantification of hyperperfusion after carotid revascularisation

 $\Delta \overline{Q}$ at the middle cerebral artery on the stenosis side (%

Develop a surrogate model that quickly predicts cerebral circulation for a given condition by machine learning

Overperfusion risk distribution by uncertainty analysis

3D blood flow simulation for clinical study

Pipeline of shape analysis by PCA & bloodflow simulation

Multiscale fluid-particle analysis of drugencapsulated micelles in Wall shear stress distribution various geometry classification based on 104 Internal carotid arteries in BraVa database

Influence of curvature on flow performance inside patient specific femoral abdominal aortic aneurysms artery

velocity distribution. (b) Micelle accumulation points and pressure distribution.

Top: Wall shear stress distribution Bottom: Streamline

Experiment

Flow measurement for droplet formation inside microchannel using digital holography

3D interfacial geometry between water and oil

3D flow inside droplet

Simultaneous measurement of the motion of a single Red Blood Cell and surrounding flow using multicolor confocal micro-PIV

Tank-treading motion and surrounding velocity distribution of a single RBC

Data processing

Designing of modelling system V-modeler

(I) Segmentation of the vascular lumen (II) Centerline extraction (III) Surface shape reconstruction

(IV) Shape parameters calculation (curvature and torsion); (V) Alignment and position tracking

 Vessel Segmentation, Centerline Extraction, and Bifurcation Detection in cerebral medical images using deep learning-based approaches

Convolutional Neural Network

