RCSMEI

OUCHI LAB.

[Highly Efficient Energy Use and Resource Recycling]

Research Center for Sustainable Material Energy Integration

Physical Chemistry for Energy and Materials

Department of Materials Engineering

https://www.iis.u-tokyo.ac.jp/ja/research/staff/takanari-ouchi/

Energy into Metals!!

The 4 challenges of Ouchi Lab.

Ouchi Laboratory is engaged in the research and development of new smelting and recycling processes for nonferrous metals with an aim to achieve "Highly" Efficient Use of Energy and Resource Recycling." We contribute to the development of advanced technologies by efficiently converting energy into metal forms. We also contribute to the realization of a sustainable society by developing innovative recycling processes that actualize resource recycling.

Point! Point! 4 Energy conservation, CO₂ reduction, and Development of processes with low-cost, low environmental impact must be efficient energy use, CO₂ reduction, and low environmental impact achieved by promoting recycling. Metal Scrap Point! 2 The introduction of renewable energy **Metal Production** is promoted to achieve carbon Advanced devices and neutrality. and Clean Recycling Highly efficient use of energy will technologies become increasingly important. Reduction/Refining developed by Ouchi Lab. Point!3 New processes that do not Energy generate exhaust gases or **Exhaust Gas Low Cost and** waste liquids are needed. and Liquid High purity Waste Metals Aiming for zero emissions through effective use and reuse

KEY RESEARCH TOPICS

Precious metals(PMs)

The gold and platinum group metals are key materials for advanced devices.

We develop new processes to efficiently recover PMs from metal scraps using "Anodic deposition" though the anionic dissolution of PMs in molten salts and molten salt electrolysis.

Reactive metals

Lithium, sodium, calcium, magnesium, aluminum, zinc, and rare earth metals are used in energy materials, functional materials, and structural materials and reducing agents for metal production.

We develop innovative smelting and refining processes by controlling electrochemical reactions molten salts.

Titanium

Producing titanium metal from ore involves a specific multi-stage, energy-intensive, and high CO₂ emission process.

To replace such a time-consuming and high-cost process, we develop new processes to efficiently remove oxygen from titanium scrap and enable "upgrade recycling" by producing purer titanium compared to that produced from the ore.

Electrochemical plating

For advanced devices, electrochemical plating is indispensable for fabricating wires and contacts, corrosion protection materials, functional components, catalysts, etc.

We develop innovative plating technologies to produce structures and films with the desired functions and shapes by controlling the behavior of metal ions, electrode surface potential, and crystal structure.

