ValORIZATION of the urban mine resources and refractory ores by advanced technologies for solid separation and concentration.

Technologies for Resource Circulation / Environmental Restoration

- **Crushing**, Grinding, Physical separation, Smelting, Refining, High-purity metal

Special Grinding Technologies for Separation of Solids

Soil Remediation by surface grinding
- Increase of SiO₂ exposure by removal of surface Mn
- Concentration of Mn into a fine particle fraction

Solid analysis to investigate the mineral separation

- Identification of the mineral phases
- Quantification of liberation degree and weight ratio of each mineral

Pretreatment Operations for Improving the Solid Separation

- Recovery of Co from Li-Ion batteries by slow heating
 - Process analysis to improve the recovery of valuable metals from Li-Ion batteries (LIB)
 - Co recovery from different size fractions at different temperatures

Advanced Technologies for Environment Remediation

- As removal by surface precipitation: Study and optimization of surface precipitation, Removal and recovery of inorganic elements in high efficiency
- Removal enhancement by amorphization: Calcination of MgCO₃ to MgO and quenching to suppress crystallization

High-selective separation by novel electric pulsed charge
- Selective separation and peeling at interface by control of voltage, current, resistance and discharge path in electric pulsed charge
- Creating a new recycling loop

Control of minerals separation by microwave irradiation
- Selective liberation of mineral phases by heat
 a. crack formation at phase boundaries due to different thermal expansion
 b. selective change of surface properties

Optimization of grinding operations by simulations
- Estimation of grinding performances by analysis of collisions between stirrer and substrate
- Possible elucidation of stirring and granulation mechanisms

Recovery of magnetite by slow-cooling crystallization
- Study of the separation of magnetite from an amorphous phase slag via smooth-cooling crystallization and magnetic separation
- Magnetite particle size and precipitation rate increased by decreasing the cooling rate

Process optimization by combination of geochemical modeling and fluid analysis
- Creation of ground model from terrain data and reproduction of the dynamic shape water bodies
- Prediction of concentration profiles by considering chemical equilibria