HIRAOKA LAB.

[Design Methodology of Human-Centered Systems]

Vehicle Dynamic Control and Strategy of Automated Driving

Human-Machine Systems

Department of Mechanical and Biofunctional Systems

https://sites.google.com/site/toshihirohiraoka/

One of the most representative human-machine systems in daily life is a driver-vehicle system. To achieve a safer, more comfortable, and more efficient traffic environment, we have to optimize the whole system including driver-vehicle-road in addition to improving vehicle performance. Consequently, my current research goal is to establish a design methodology of the driver-vehicle system to improve QOM (Quality Of Moving).

Offline

Control

Vehicle Dynamic Control

- · Control System Design Robust to Disturbances and **Modeling Errors**
- Automatic Path Tracking Control for Four-Wheel Steering Vehicle
- Active Four-Wheel Steering Control
- Active Pitch Control by Driving/Braking Force Distribution

HMS (Human-Machine System)

- Advanced Driver-Assistance System (ADAS)
 - Eco-Driving Support System
 - Safe Driving Evaluation System
 - · Wakefulness-Keeping Support System · Smooth Driving Assist System
 - Expressway Driving Game
- Analysis of Interaction between Driver and AD (Automated Driving)/ADAS
 - Modeling of Trust Generation Mechanism for AD/ADAS Impact of Trust in AD/ADAS on Driving
 - Behavior
 - Countermeasures to prevent over-trust in AD/ADAS
- Haptic Shared Control
- Direct HSC (D-HSC)
- Indirect HSC (I-HSC)
- Collision Risk Indices
- Deceleration for Collision
- Avoidance (DCA) Lateral Acceleration for Collision (LACA)

Green

Safe

Aim for

high level integration

Smart Drive

for better QOM

(Quality Of Moving)

Smooth flow

ADAS concept to encourage

spontaneous behavioral change

Trust generation mechanism model for AD/ADAS

Expressway Driving Game

Upper: to encourage deceleration

Lower: to encourage collision avoidance steering

