東京大学 生産技術研究所 北條 博彦

化学生命工学専攻

有機機能材料学特論||

Mutual Interference between Intramolecular Proton Transfer Sites through the Adjoining π -Conjugated System in Schiff Bases of Double-Headed, Fused Salicylaldehydes

Hirohiko Houjou,* Hajime Shingai, Keisuke Yagi, Isao Yoshikawa, and Koji Araki

Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

J. Org. Chem. 78 (2013) 9021-9031.

ABSTRACT: We synthesized two constitutionally isomeric bis(iminomethyl)-2,6-dihydroxynaphthalenes, namely, α , α -diimines 1 and β , β -diimines 2, which can be formally represented as fused salicylaldimines with resonance-assisted hydrogenbonding sites. Spectroscopic data show that the OH/OH, NH/OH, and NH/NH forms of 1 were in equilibrium in

solution and that the proportion of the NH-bearing tautomers increased as the solvent polarity increased. The UV spectra of thin solid films of 1 with various types of hydrogen-bonding networks differed from one another, and the spectral profiles were markedly temperature dependent, whereas the spectra of 1 in the molten state showed quite similar profiles. In contrast, 2 existed predominantly as the OH/OH form irrespective of the solvent polarity or crystal packing. Quantum chemical calculations suggest that the difference between the probabilities of intramolecular proton transfer in 1 and 2 can be explained in terms of the interplay between the resonance-assisted hydrogen-bonding sites and the adjoining π -conjugated system.

NR

OH

HO

RN

1a-d

$$a: R = C_5H_{11}$$
 $b: R = C_8H_{17}$
 $c: R = CH_2-Ph$
 $d: R = CH_3$

Figure 1. Structures of α , α -diimines 1 and β , β -diimines 2.

Scheme 2. Resonance Hybridization Schemes for the NH/OH Forms of (a) α,α -Diimines 1 and (b) β,β -Diimines 2

Scheme 1. Possible Tautomers of α,α -Diimines 1 and β,β -Diimines 2

Figure 2. UV—vis absorption spectra of (a) **1b** and (b) **2b** in methylcyclohexane, tetrahydrofuran, ethanol, 75/25, 50/50, and 25/75 mixtures of methylcyclohexane and tetrahydrofuran, and 75/25, 50/50, and 25/75 mixtures of tetrahydrofuran and ethanol. Each inset shows the absorptivity at selected wavelengths as a function of the dielectric constant of the solvents used.

Figure 3. (a) Ideal spectra of the OH/OH, NH/OH, and NH/NH forms of **1b**. (b) Solvent dependence of the molar fraction of each tautomer, calculated on the basis of the ideal spectra.

In contrast, in pure ethanol ($\varepsilon=25$), $1b_{\rm NH/NH}$ was the major component and the $1b_{\rm OH/OH}/1b_{\rm NH/NH}$ and $1b_{\rm NH/OH}/1b_{\rm NH/NH}$ population ratios were 0.08 and 0.88, respectively. The difference in solvent composition dependence between $1b_{\rm NH/OH}$ and

Table 1. Energies of Tautomers of Aldimines Calculated at the B3LYP/6-311G** Level

	energy (kJ/mol)		λ_{\max} (nm)		$\langle \text{HOMA} \rangle^a$	
	$\varepsilon = 1$	$\varepsilon = 25$	$\varepsilon = 1$	$\varepsilon = 25$	$\varepsilon = 1$	$\varepsilon = 25$
$1_{\mathrm{OH/OH}}$	(0.0)	(0.0)	360	358	0.70	0.70
$1_{\mathrm{NH/OH}}$	+6.9	-7.7	396	396	0.39	0.46
$1_{\mathrm{NH/NH}}$	+20.4	-9.9	441	446	0.00	0.19
$2_{\mathrm{OH/OH}}$	(0.0)	(0.0)	431	413	0.78	0.77
$2_{\mathrm{NH/OH}}$	+45.1	+21.2	599	578	0.36	0.60
$2_{\mathrm{NH/NH}}$	+89.8	+51.9	950	912	0.67	0.66
3_{OH}	(0.0)	(0.0)	290	286	0.98	0.98
$3_{ m NH}$	+22.8	+4.2	355	360	0.19	0.46

^aHarmonic oscillator model of aromaticity index averaged over the two six-membered rings.

HOMA =
$$1 - \frac{\alpha}{n} \sum_{i=1}^{n} (R_{\text{opt}} - R_i)^2$$

mol, respectively; as a result, the relative stabilities of the two tautomers were opposite those observed under in vacuo conditions. We calculated the energetic difference between $\mathbf{1}_{\text{NH/OH}}$ and $\mathbf{1}_{\text{NH/NH}}$ to be 2.18 kJ/mol, and from this value, we calculated the $\mathbf{1}_{\text{NH/OH}}/\mathbf{1}_{\text{NH/NH}}$ population ratio to be 0.83 (at 298 K) when we correctly included the statistical weight of the tautomers. The $\mathbf{1}_{\text{OH/OH}}/\mathbf{1}_{\text{NH/NH}}$ population ratio was calculated to be 0.02. These values were in good agreement with the observed values (0.88 and 0.08, respectively); therefore, we concluded that this level of calculation was sufficient.

Figure 10. Approximate quadratic potential curves for the tautomers of (a) 1 and (b) 2. Energy is plotted against a geometrical parameter related to the loss of aromaticity.