OKABE LAB.

[Future Materials : Titanium, Rare Metals]

International Research Center for Sustainable Materials

http://okabe.iis.u-tokyo.ac.jp

IIS Open House in 2011

Materials Chemistry, Environmental Science, Recyclable Resource Engineering, **Rare Metal Process Engineering**

Department of Materials Engineering

Changing Rare Metals into "Common" Metals !

Okabe lab. is focusing on research of new production processes for reactive metals and environmentally sound recycling technologies for rare metals, based on "Future Materials : Titanium, Rare Metals" as keyword. We believe we can contribute to society by innovation of process technologies for rare metals.

Let's touch the "Rare Metals".

Resource Recovery and Materials Process Engineering Laboratory

New Production Process for Rare Metals

New Production Process for Titanium

Ti has high strength to density ratio, corrosion resistance and abundant mineral resources,

so "Base metal in the near future".

Ti production process using disproportional reaction of TiCl₂ in molten salt

Conventional process (Kroll process) $TiCl_4 + 2Mg = Ti + 2MgCl_2 + "Heat"$

Disproportional reaction $2TiCl_2 = Ti + TiCl_4$

Analytical results of the obtained samples after leaching

Exp. No. (pos.)	Total pressure, <i>p</i> , (atm)	Crucible	Concentration of Ti sample, C_i (mass%)				
			Ti	Mg	Fe	Ni	Cr
А	1	Ni	99.2	<0.01	0.53	0.09	0.15
В	1	Ni	97.3	0.01	1.36	1.00	0.30
C(a)	2×10^{-4}	Ni	99.4	<0.01	0.27	0.06	0.28
C(b)	2 × 10 ⁻⁴	Ni	99.5	<0.01	0.16	0.07	0.24
S. A. C.	C A					- martin	
A		P.K	d				
	Part 1	0.0					
2	and the second	1					
11 6						41	I. A.

 \Rightarrow Ti with a purity of 99.0 % was efficiently obtained.

Exp. A 99.2%Ti

Environmentally Sound Recycling Technology for Rare Metals New recovery process for REEs (rare earth elements) from magnet scrap

Extraction ratio of Nd, Dy by molten MgCl₂

Exp. C(b) 99.5%Ti

 \Rightarrow Over 70 % of Pt was dissolved in NaCl aq.

0 C

Date: 2012/5/31-6/2 Filename: 120531_Seikenkoukai_poster_Okabe_lab

Institute of Industrial Science