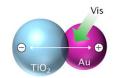
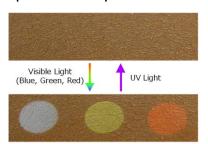
TATSUMA LAB.

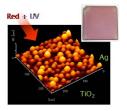
[Electrochemistry and Nanoparticle Plasmonics]

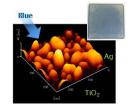
Department of Materials and Environmental Science

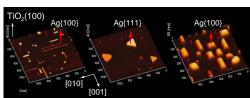

http://www.iis.u-tokyo.ac.jp/~tatsuma/

Advanced Electrochemical Devices

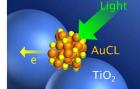

School of Engineering
Department of Applied Chemistry

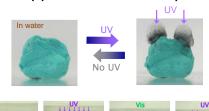

Nanoparticle Photochemistry


We found that plasmon-induced charge separation is possible at the metal nanoparticle-metal oxide interface. We have applied this phenomenon to multicolor photochromism, photovoltaic systems, photocatalysis, chemical and biosensing, and photoactuation of polymer gels.

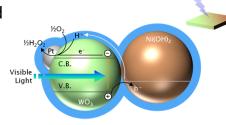

 Multicolor photochromism of silver nanoparticles deposited on TiO₂.

Oriented silver nanoparticles.





 Photovoltaics and photocatalysis of TiO₂ loaded with metal clusters such as Au₂₅.



- Photovoltaics and photocatalysis of gold nanoparticles deposited on TiO₂.
- Photoactuation of polymer gels loaded with copper or silver nanoparticles.

Visible light-driven photocatalysts with energy storage abilities.
dark

Infrared photochromism of pyramidal silver nanorods.