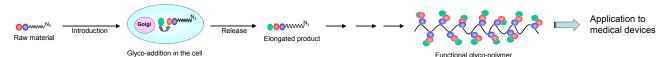
# HATANAKA LAB.

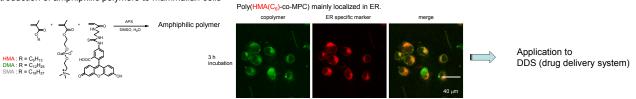
## [Glyco-Biotechnorogy]

### **Department of Materials and Environmental Science**

http://www.chembio.t.u-tokyo.ac.jp/labs/hatanaka.html

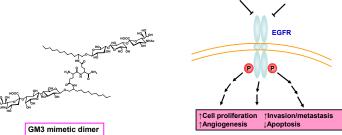

## **Biomaterial Engineering**

Department of Chemistry and Biotechnology


## 3rd Biomacromolecules

#### [To make saccharide chains and glyco-polymers]

★ Production of oligosaccharide by using mammalian cells




 $\bigstar$  Introduction of amphiphilic polymers to mammalian cells

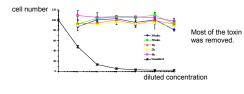


#### [To know the functions of saccharide chains]

 Synthesis of glycolipid dimer analog and its inhibitory effect on epidermal growth factor-induced receptor tyrosine kinase
Development of new antitumor agent

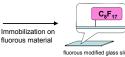


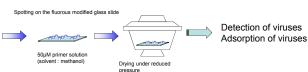
 $\begin{array}{c} \text{Inhibition of phospholylation of EGFR} \\ \rightarrow \text{Inhibition of cell growth} \end{array}$ 


|                           | FBS | G <sub>0</sub> /G <sub>1</sub><br>(%) | S<br>(%) | G <sub>2</sub> /M<br>(%) |
|---------------------------|-----|---------------------------------------|----------|--------------------------|
| Control<br>(EGF negative) | -   | 85.9                                  | 5.1      | 9.0                      |
| Control<br>(EGF positive) | +   | 71.5                                  | 13.3     | 15.2                     |
| GM3                       | +   | 76.0                                  | 8.7      | 15.3                     |
| m-dimer                   | +   | 83.4                                  | 6.8      | 9.8                      |

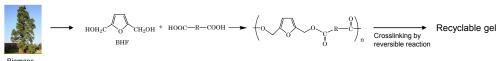
#### [To use saccharide chains and biomass]

★ Development of Vero-toxin removal apparatus







★ Immobilization of oligosaccharides by using fluorous interaction







★ Synthesis of bio-based plastic

