HAMBA LAB.

Physics and Modeling of Turbulence

Department of Fundamental Engineering

Department of Physics, Graduate School of Science

Fluid Physics

http://www.iis.u-tokyo.ac.jp/~hamba/

Turbulence Modeling

Turbulence can be widely seen in air and water flows in nature and in engineering field. Turbulent flows can be simulated by solving the equation of fluid motion with computer. But it is difficult to simulate all eddies from the largest one to the smallest one. It is necessary to predict turbulent flows by simulating only large eddies of the mean velocity field. We then need to theoretically derive the equation for the mean velocity field. This is called the turbulence modeling.

The turbulent motion of small eddies is not solved; their effect on the large eddies is expressed as the viscosity enhanced by turbulence. It is important to evaluate the turbulent viscosity and to obtain a closed system of equations for the mean velocity field and the turbulence quantities. In our group, using statistical theory and numerical simulation we clarify the mechanism of turbulence and model the turbulent viscosity in order to develop universal model equations of turbulence.

Analysis of turbulent transport in channel flow

The energy transfer in the scale space was examined to clarify the mechanism of turbulence generation near the wall. The scale-space energy density was formulated using the filtering of the velocity field.

Analysis of counter-gradient diffusion in compressible turbulence

In compressible turbulent flows, counter-gradient diffusion phenomena are seen, where heat is transferred from low to high temperature regions. Numerical simulations of turbulent Rayleigh flow were carried out and the transport equation of heat flux was examined to investigate the mechanism of counter-gradient diffusion.

Modeling the magnetohydrodynamic turbulence and magnetic reconnection

Solar flares are driven by the reconnection of magnetic flux tubes. The magnetic reconnection was simulated and analyzed from the viewpoint of magnetohydrodynamic turbulence modeling.

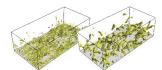


Fig.1 Vortex structure near the wall in turbulent channel flow

Fig.2 Vortex structure in turbulent Rayleigh flow

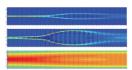


Fig.3 Jet and electric current of magnetic reconnection