SEZAKI LAB.

[Urban Sensing and Mobility Analysis]

Center for Spatial Information Science

Socio-cultural Environmental Studies

Information & Communication Engineering

http://www.mcl.iis.u-tokyo.ac.jp

Capturing Human Mobility Using Bluetooth

Purpose

• Developing low-cost method to sense human mobility using Bluetooth

▲ BR/EDR LE

Diffusive-DNA-Based Molecular Communication

- Modulating Propagation Carrier
- Rx

Technologies

- Congestion sensing by detecting **Bluetooth devices**
- Direction detection by observing transition of signal strength of Bluetooth Low Energy beacon

Applications

- Managing and reducing congestion of indoor facilities
- Understanding human mobility in disaster to support evacuation

Relationship between number of counted people and number of detected Bluetooth device at Makuhari Messe

Observed received signal strength indication (RSSI) of

Understanding Urban Mobility Using Smart Card Data

Grasp the patterns of passengers' movement in Kotoden by using Nonnegative Matrix and Tensor Factorizations (NMF, NTF).

Nature Environment Monitor Research Using animal wearable sensors

A study on the bioacousitc information of a zone where it is difficult for people to step on continuously. Animals do sensing in place of people. Research on bioacousitc information for nation environment monitoring

- Classify the stations into four groups of lines without the knowledge of lines.
- Most passengers don't change to another line. (Changes happen in 8% of the ride.)
- Characteristic stations such as the closest
- station to a shopping mole are extracted.

Estimating Reconstruction Accuracy of Data Perturbation in Mobile Sensing

• A technique to protect privacy by randomizing observed sensor values by each user before sending to a server. The server restore only statistical information from a collection of randomized sensor data.

- Estimate reconstruction accuracy assuming spatiotemporal correlation of the original data.
- Did an field experiment of mobile environmental sensing in Shibuya,

Placement of Sensor Nodes in Mobile Sensing

We propose methods to observe high-quality geospatial information by collecting sensing data from a part of numerous IoT devices that exist in each measurement. Both methods uses the kriging variance (reliability of the

