Lightweight composite structures have been applied to airplanes and automobiles. For the health diagnostics of the structures, we are developing structural health monitoring systems with optical-fiber ultrasonic sensors and non-destructive inspection techniques using laser ultrasonics.

Lightweight composite structures

- CFRP skin/stringer structural elements

Non-destructive inspection

- Numerical simulation of wave propagation behavior in laser ultrasonics

Structural health monitoring

- Development of monitoring systems
 - PSFBG high-sensitive fiber-optic ultrasonic sensor system
- Damage detection methods for composites
 - Remote sensing method to measure AE waves precisely under ultimate environments

Intact laminate

- MFC
 - \(A_1\)
 - FBG
- CFRP laminate

Laminate with a delamination

- MFC
 - \(A_1\)
 - \(S_0\) (faster than \(A_1\))
 - FBG

Active detection of delamination damage in a composite plate based on mode conversions of Lamb waves.