Frontier in Theory of Condensed-Matter Physics

Bw-801

Activity Report 13:30~15:30

FATANO LAB.

[Non-Hermitian Analysis of Neural Networks]

Department of Fundamental Engineering

http://hatano-lab.iis.u-tokyo.ac.jp

Many-Body Physics

Department of Physics

Non-Hermitian Analysis of Neural Networks

Neural networks have synapses that activate neurons and those that suppress them (Fig. 1). The matrix that represents such a network becomes asymmetric. As a simple example, let us consider the following real asymmetric matrix:

There are three rules here: (1) only the elements below and above the diagonal are nonzero; (2) the absolute value of the former is e^{+g} , while that of the latter is e^{-g} ; (3) the sign of each element is randomly chosen.

The eigenvalue distribution of the matrix is fantastically fractal as shown in Figs. 2 and 3. We can analyze Fig.1. A simple mathematical model of a neural network. functions of the neural network from this distribution.

