井上（純）研究室

鉄鋼冶金とデータ駆動科学の融合

物質・環境系部門
大規模実験高度解析推進基盤

井上（純）研究室
鉄鋼冶金とデータ駆動科学の融合

私たちは身の回りの様々な構造物を支える材料の高強度化、社会の様々なニーズに応えるとともに、移動体とりわけ自動車の車体軽量化を通じて資源・環境問題の改善に寄与する目的で研究されている。我々の研究室では、構造材料の組織形成や力学特性を支配するメカニズムを明らかにすることにより、従来の冶金学とデータ駆動科学を融合したマテリアルズ・インテグレーション（Materials integration, MI）という新たな手法の開発を行っています。

①相変態や局所変形挙動をナノレベルでかつリアルタイムに捉える

鉄鋼材料の力学特性は変態生成組織の形状や分布に大きく依存します。この例では、フェライト-ベネライト（FP）とベネライト（B）の組織形成に伴う表面形状の微妙な変化を明らかにすることに成功しました。従来の特性測定材料を用いて、新発見に基づく新実験実の提案と精緻なシミュレーション技術を融合していくことが求められています。


②直接計測困難な材料の内部情報を間接データから数理統計的に定量評価する

アルミ合金の性質は集積組織によって大きく変化するため、その制御には再結晶組織形成の形成過程の解明が必要です。この例では、気象予測に用いられるデータ交差という手法を用いることで、EBSDとX線回折から得られる間接データと数値モデルを同定し、直接計測が困難な組織因子を明らかにすることを目指しています。

A1050合金の再結晶挙動
実際の組織変化とファーズフィールドシミュレーションを同定

③複雑な材料組織の分類や幾何学的特徴抽出を全自動かつ高速に実行する

鉄鋼材料の微細組織は非常に複雑なため、その分類や特定評価は長年の研究者にしかできない。著者の「鉄の技」です。この例では、最新の機械学習モデルを適用することで、その自動化が可能であることを示しています。この様々な解析を通じ、従来の観察に因ざれない新たな気つきが得られると期待しています。


④スパースモデリングにより組織形成や特性を支配する原理を自動抽出する

金属材料の組成形成や特性を予測するモデルは多数存在しますが、どのモデルが現象を説明しているのかの判断は、研究者、機械学習の「嬖主」が決め手となります。この例では、機械学習の原理を用いることで、現象を説明するモデルのランク付けが可能であることを示しています。正しい現象の解釈には定量的排除による構造の構築が重要です。

5. Kim et al., Comp. Mater. Sci. 190 (2020), 108377

⑤様々な高精度データからモデルを客観的、定量化的に評価・抽出する