Advanced Wireless Communication Networks

Our research group focuses our attention on exploring key technologies of next-generation wireless communication networks, such as 5G/6G and IoT. More specifically, our research interests include, but are not limited to: transmission technology, digital signal processing, network protocols, information theoretic security, cooperative communications, and wireless sensor networks.

Faster-than-Nyquist Signaling

Rate boost by non-orthogonal symbols

\[T/\alpha \]

High Capacity

This scheme packs more symbols than those limited by the Nyquist criterion, hence increasing a transmission rate without imposing the bandwidth and power expansion.

Physical Layer Security

Relay’s signal processing controls propagation environments.

High Security

Physical layer security has the potential of attaining information-theoretically secure communications, without relying on encryption. This may be suitable for IoT networks.

Massive MIMO Transmissions

Symbol duration ≤ Symbol interval

Isolated pulse

100〜1000 antennas [Massive MIMO]

High Rate & High Energy Efficiency

Source bits are allocated onto large-scale antenna elements. This scheme operates in a single-RF transmitter structure, hence attaining high capacity and energy efficiency.

Delay Tolerant Networks

Selected links

\[C(h_{SR_1}) > R \]

Shared packet

Packets are deleted after ACK reception

Broadcast phase

Relaying phase

High Reliability

Exploiting data buffers at relay nodes in cooperative communications allow us to attain an improved reliability, owing to the explicit benefits of flexible link selection.