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Fig. 1: The proposed shape-conditioned image generation network (SCGAN) outputs
images of an arbitrary object with the same shape as the input normal map, while
controlling the image appearances via latent appearance vectors.

been used to modify synthetic data to more realistic training images, and it has been
shown that such data can improve the performance of learned estimators [27,28,2].
These methods use synthetic data as a condition on image generation so that output
images remain visually similar to the input images and therefore keep their original
ground-truth labels. In this sense, the aforementioned limitation of conditional im-
age generation severely restricts the application of such training data synthesis ap-
proaches. If the method allows for more fine-grained control of object shapes, poses,
and appearances, it can open a way for generating training data for, e.g., generic ob-
ject recognition and pose estimation.

In this work, we propose SCGAN (Shape-Conditioned GAN), a GAN architecture
for generating images conditioned by input 3D shapes. As illustrated in Fig. 1, the
goal of our method is to provide a way to generate images of arbitrary objects with the
same shape as the input normal map. The image appearance is explicitly modeled as
a latent vector, which can be either randomly assigned or extracted from actual im-
ages. Since we cannot always expect paired training data of normal maps and images,
the overall network is trained using the cycle consistency loss [39] between the origi-
nal and back-reconstructed images. In addition, the proposed architecture employs
an extra discriminator network to examine whether the generated appearance vector
follows the assumed distribution. Unlike prior work using a similar idea for feature
learning [7], this appearance discriminator allows us to not only control the image
appearance, but also to improve the quality of generated images. We demonstrate
the effectiveness of our method in comparison with baseline approaches through

Our group is focusing on multidisciplinary researches at the intersection of computer vision, 
machine learning, and human-computer interaction, and conducting a wide spectrum of 
researches from basic methodologies to application systems.
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Figure 2: Spatial weights CNN for full-face appearance-based gaze estimation. The input image is passed through multiple
convolutional layers to generate a feature tensor U . The proposed spatial weights mechanism takes U as input to generate
the weight map W , which is applied to U using element-wise multiplication. The output feature tensor V is fed into the
following fully connected layers to – depending on the task – output the final 2D or 3D gaze estimate.

spatial weighting is two-fold. First, there could be some
image regions that do not contribute to the gaze estimation
task such as background regions, and activations from such
regions have to be suppressed for better performance. Sec-
ond, more importantly, compared to the eye region that is
expected to always contribute to the gaze estimation perfor-
mance, activations from other facial regions are expected to
subtle. The role of facial appearance is also depending on
various input-dependent conditions such as head pose, gaze
direction and illumination, and thus have to be properly en-
hanced according to the input image appearance. Although,
theoretically, such differences can be learned by a normal
network, we opted to introduce a mechanism that forces the
network more explicitly to learn and understand that different
regions of the face can have different importance for estimat-
ing gaze for a given test sample. To implement this stronger
supervision, we used the concept of the three 1× 1 convo-
lutional layers plus rectified linear unit layers from [28] as
a basis and adapted it to our full face gaze estimation task.
Specifically, instead of generating multiple heatmaps (one to
localise each body joint) we only generated a single heatmap
encoding the importance across the whole face image. We
then performed an element-wise multiplication of this weight
map with the feature map of the previous convolutional layer.
An example weight map is shown in Figure 2, averaged from
all samples from the MPIIGaze dataset.

4.1. Spatial Weights Mechanism

The proposed spatial weights mechanism includes three
additional convolutional layers with filter size 1×1 followed
by a rectified linear unit layer (see Figure 2). Given activation
tensor U of size N×H×W as input from the convolutional
layer, where N is the number of feature channels and H and
W are height and width of the output, the spatial weights
mechanism generates a H × W spatial weight matrix W .

Weighted activation maps are obtained from element-wise
multiplication of W with the original activation U with

Vc = W "Uc, (1)

where Uc is the c-th channel of U , and Vc corresponds to
the weighted activation map of the same channel. These
maps are stacked to form the weighted activation tensor V ,
and are fed into the next layer. Different from the spatial
dropout [28], the spatial weights mechanism weights the
information continuously and keeps the information from
different regions. The same weights are applied to all feature
channels, and thus the estimated weights directly correspond
to the facial region in the input image.

During training, the filter weights of the first two con-
volutional layers are initialized randomly from a Gaussian
distribution with 0 mean and 0.01, and a constant bias of 0.1.
The filter weights of the last convolutional layers are initial-
ized randomly from a Gaussian distribution with 0 mean and
0.001 variance, and a constant bias of 1.

Gradients with respect to U and W are

∂V

∂U
= ∂W , (2)

and

∂V

∂W
=

1

N

N∑

c

∂Uc. (3)

The gradient with respect to W is normalised by the total
number of the feature maps N , since the weight map W
affects all the feature maps in U equally.

4.2. Implementation Details

As the baseline CNN architecture we used AlexNet [14]
that consists of five convolutional layers and two fully con-
nected layers. We trained an additional linear regression
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ABSTRACT

Despite advances in machine learning and deep neural net-
works, there is still a huge gap between machine and human
image understanding. One of the causes is the annotation
process used to label training images. In most image catego-
rization tasks, there is a fundamental ambiguity between some
image categories and the underlying class probability differs
from very obvious cases to ambiguous ones. However, current
machine learning systems and applications usually work with
discrete annotation processes and the training labels do not
reflect this ambiguity. To address this issue, we propose an
new image annotation framework where labeling incorporates
human gaze behavior. In this framework, gaze behavior is
used to predict image labeling difficulty. The image classifier
is then trained with sample weights defined by the predicted
difficulty. We demonstrate our approach’s effectiveness on
four-class image classification tasks.

CCS Concepts

•Human-centered computing ! Human computer inter-
action (HCI); •Computing methodologies ! Computer vi-
sion;
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INTRODUCTION

Machine learning-based computer vision methods have been
growing rapidly and the state-of-the-art algorithms even out-
perform humans at some image recognition tasks [9, 10]. How-
ever, their performance is still lower than humans’ when the
training data is limited or the task is complex [1]. Further, the
errors that machines make are often different from the ones
humans make [12].

One approach to overcome this difficulty is to incorporate
humans in the loop via human-computer interaction [4, 6, 7].
Some prior examples include using human brain activities to
infer perceptual class ambiguities in image recognition and
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Figure 1. Overview of the proposed method. The first gaze SVM is
trained using gaze and mouse features during image annotation and the
second image SVM is trained so that it behaves similarly to the gaze
SVM and reflects the perceptual class ambiguity for humans.

assigning difficulty-based sample weights to the training im-
ages [8, 15]. However, while gaze is also known to reflect
internal states of humans, is much cheaper to measure than
brain activity, and has been used as a cue to infer user proper-
ties related to visual perception [3, 14, 16, 17], there has not
been much research on using gaze data for guiding machine
learning processes.

This work proposes an approach for gaze guided an image
classification that better reflects the class ambiguities in human
perception. An overview is given in Fig. 1. First, we collect
gaze and mouse interaction data when participants work on a
visual search and annotation task. We train a support vector
machine (SVM) [2] using features extracted from these gaze
and mouse data and use its decision function to infer perceptual
class ambiguities when assigning the target image classes. The
ambiguity scores are used to assign sample weights for training
a second SVM with image features. This results in an image
classifier that behaves similarly to the gaze-based classifier.

GAZE-GUIDED IMAGE RECOGNITION

The basic idea of our method is that the behavior of the image
annotator reflects the difficulty of assigning class labels. Gaze
behavior on annotated images is more distinctive if the image
clearly belongs to the target or non-target classes, while it
becomes more indistinctive on ambiguous cases. Therefore,
the decision function of an SVM classifier trained on gaze
and mouse features can be used to estimate the underlying
perceptual class ambiguity of the training images.

Our method uses gaze data recorded during a visual search and
annotation task on an image dataset with pre-defined image
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