Tokumoto LAB.

[Structure and Properties of Lattice Defects]

Department of Materials and Environmental Science

Nanostructure Materials Science

Department of Materials Engineering

http://www.tokumoto.iis.u-tokyo.ac.jp

Topological insulator

Topological insulators are quantum materials that have a bulk band gap as an ordinary insulator but have protected metallic conducting states on their edge/surface. Topological insulators were first predicted in 2005, and have been

experimentally verified in 2007.

2D topological insulator

3D topological insulator

Metallic edge/surface states

helically spin-polarized massless Dirac fermions robust against nonmagnetic disorder

Dislocations in topological insulators

In 2009, it has been theoretically predicted that the metallic states also occur along dislocations in 3D topological insulators.

Experimental verification of dislocation conduction in Bi-Sb topological insulator

Metallic states localized along dislocations in topological insulators

Enhancing bulk insulation of topological insulators

One of the most urgent tasks in the field of topological insulators is to achieve a bulk-insulating state, which is a prerequisite for the study of characteristic surface or dislocation transport phenomena.

Optimizing composition of Pb($Bi_{1-x}Sb_x$)₂Te₄ topological insulator to achieve a bulkinsulating state

Direct observation of Te/Se ordering, which is a key structure to achieve lower bulk conduction, in Pb(Bi₁₋ $_x$ Sb_x)₂ (Te_{1-y}Se_y)₄ topological insulator.

