OGULAB.

[Nanospace for Environmental Protection, Resource Recovery, and Energy Storage]

Department of Materials and Environmental Science

http://www.ogulab.iis.u-tokyo.ac.jp

Lab for Environmental Catalyses and Materials Science

Department of Applied Chemistry

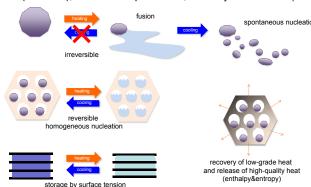
Uniform Nanospace for Energy Storage

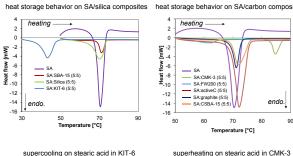
D'où venons-nous? Que sommes-nous? Où allons-nous?

Phase Change Materials (PCMs)

solid iquid ≥gas reversible phase change = storage and release of latent heat high energy storage density, storage/release of heat in a narrow temperature range, wide applicability of various compounds

for example...H2O ഠ 100 2.26 x10³ Temperature / latent heat of evaporation 4 18 x10² 3.36 x10² latent heat of fusion

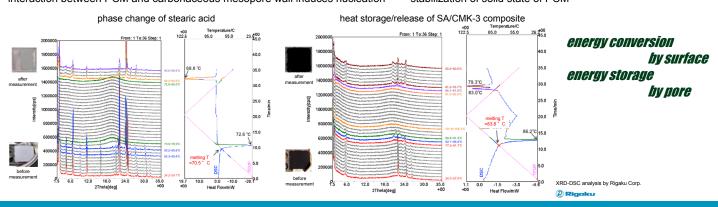

moreover


stearic acid (higher fatty acid): $C_{17}H_{35}COOH...2.02 \times 10^2 \text{ kJ/kg@69}$ ° C erythritol (natural sugar alcohol) : C $_4$ H $_6$ (OH) $_4$...3.40 x10 2 kJ/kg@118 $^\circ$ paraffin (linear chain saturated hydrocarbon): C_nH_{2n+2}...1.89 x10² kJ/kg@23° C

Heat (Enthalpy) / kJ/kg

Energy storage by porosity

leak-free during phase & volume changes between solid and liquid thin pore wall(~10 nm), small lattice parameter, diversity of materials (SiO₂, C, etc) = good thermal conductivity



endo 70

Phase change & Energy storage/release behavior

interaction between PCM and carbonaceous mesopore wall induces nucleation = stabilization of solid state of PCM

