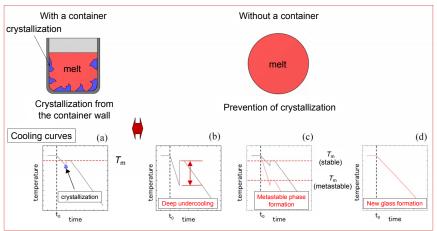
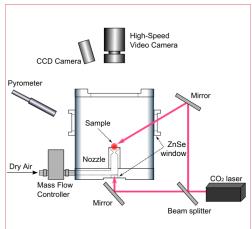
INOUE LAB.

[New glass formation by containerless processing]

Department of Materials and Environmental Science

http://www.vitreous.iis.u-tokyo.ac.jp


Amorphous Materials Design


Department of Materials Engineering

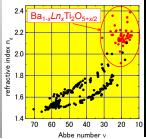
Metastable Functional Oxides Solidified from Undercooled Melts

Melts could be deeply undercooled by containerless processing. The undercooled melts are thermodynamically non-equilibria and thus new glasses and new metastable materials can be solidified from the melts. Our purpose of research is to prepare new metastable functional oxides and to investigate their physical properties such as thermal stability, optical transmittance, refractive index, luminescence properties, dielectric properties, proton conductivity, hydrogen diffusion, and magnetic properties. Furthermore, through structural analyses including local structure simulation, new guideline for metastable functional materials design will be developed.

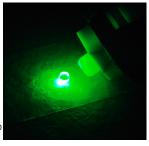
New glasses and new metastable materials prepared by containerless processing Thermal, optical, electrical properties of the glass and the metastable materials Local structure analysis of the glass based on the molecular dynamics simulation

Containerless processing

Aerodynamic levitation furnace


Levitated melt (~2000)

La Ce Pr Nd Sm Eu Gd


BaTi₂O₅

Tb Dy Ho Er Tm Yb Lu

Rare-earth doped functional glasses

High refractive index glasses

Luminescence from titanate glass