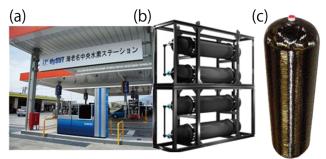
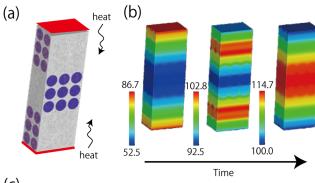
Yoshikawa Lab. Exhibition and demonstration of hydrogen vehicle

[Computational Solid Mechanics for Technologies Building Hydrogen Economy]


Center for Research on Innovative Simulation Software

http://www.young.iis.u-tokyo.ac.jp

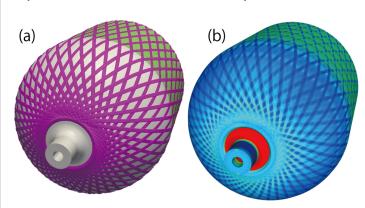
Multi-scale solid mechanics


Graduate school of engineering, Department of Mechanical Engineering

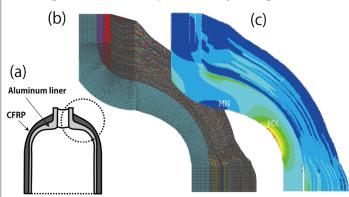
Simulation-aided design and production of CFRP high-pressure tank for hydrogen infrastructure

- (a) Hydrogen fueling station for fuel cell vehicle*
- (b) Hydrogen accumulator* (c) High-pressure hydrogen tank**
 - * http://www.samtech.co.jp/products/hpc.html
 - ** http://www.f-suiso.jp/bunkakai/H22bunnkakai/22_6_1_toujou.pdf

Optimization of curing process



- (a) FEM model
- (b) Time profile of temperature(c) Time profile of the degree of cure


Precisely estimating temperature and strain distribution inside a CFRP material, the simulation allows us to optimize the curing plan realizing a reliable and afforable hydrogen tank.

Optimization of meso-scale parameters

(a) Meso-scale FEM model consisting of aluminum liner, fiber, and plastic resin
(b) Mises stress distribution The aim of this study, with a supercomputer, is to optimize geometric parameters of fiber bundles by estimating the local stress concentration in the vicinity of the crossover site of two fiber bundles.

Strength of dome part of hydrogen tank

- (a) Intersection of tank: aluminum liner and CFRP composites
- (b) FEM model for anisotropic CFRP laminates (c) Mises stress distribution The simulation precisely modeling the laminate structure of anisotropic CFRP layers allows us to optimize the structure for a compact tank.